
Data Caching and Selection in 5G Networks

Using F2F Communication

Ismaeel Al Ridhawi1, Nour Mostafa1, Yehia Kotb1, Moayad Aloqaily2,3, Ibrahim Abualhaol2,4
1College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait

{Ismaeel.Al-Ridhawi; Nour.Moustafa, Yehia.Kotb}@aum.edu.kw
2Systems and Computer Engineering Department, Carleton University, Ottawa, ON, Canada

3Gnowit Inc., Ottawa, ON, Canada, moayad@gnowit.com
4Larus Technologies, Ottawa, ON, Canada, ibrahimee@ieee.org

Abstract—As an emergent technology the IoT promises

to harness the computational and data resources

distributed across different remote clouds. Fog computing

extends cloud computing by bringing the network and

cloud resources closer to the network edge. As the number

of resources contributing to the cloud/fog system grows, so

the problems associated with efficient and effective

resource selection and allocation. In this paper, we

introduce a fog-to-fog (F2F) data caching and selection

method, which allows IoT devices to retrieve data in a

faster and more efficient way. The proposed solution is

based on a data caching and selection strategy using a

multi-agent cooperation framework. Caching is achieved

by decomposing cloud data into a set of files and then

placed into fog storage sites. The selection process is based

on a run-time file location prediction technique, which

collects and maintains a repository of fog data in the form

of log files. When data needs to be retrieved, prediction is

made with the aid of these logs and previous successful

search queries resulting in realistic run-time location

estimates as well as best fog selection. Simulation results

showcase the reduced data retrieval latency that enable

tactile Internet in 5G. Additionally, results show increased

successful file hit ratio leading to a reduced number of

repeated downloads.

Index Terms—5G, big data, cloud, fog, F2C, F2F, e2e

delay, workflow-net.

I. INTRODUCTION

Increasing demand for data access coupled with

limitations in current mobile networks has led to the

emergence of the fifth-generation (5G) network. With

the rise in the number of mobile devices and service

applications, data has grown exponentially over recent

years [1]. Cloud has played a dominant role in providing

both data storage and computational capabilities. Fog

computing came to mitigate the shortcomings of the

cloud computing scheme within the Internet of Things

(IoT) environment by bringing network, processing, and

storage resources closer to the devices. This allows IoT

devices to both meet hard-constraints and offload much

of its data to the fog. No doubt, that 5G combines both

cloud and fog computing to accommodate for the

anticipated explosive growth of mobile users’ data

traffic.

Traditionally, IoT devices access data through a

remote cloud data storage site. This incurs high delays

and network bandwidth overload. The fog computing

paradigm was introduced to solve issues related to data

access and processing. IoT devices can both access and

send data to the fog for local data access and processing.

Fog computing extends the traditional cloud computing

paradigm by bringing the cloud resources such as

storage sites closer to the network edge. This allows for

a substantial number of requests to be processed near the

IoT devices, thus reducing communication delay and

providing faster service [2].

A novel approach in fog computing called Fog-to-

Fog (F2F) communication was introduced earlier to

determine the best fog to process and/or store a

particular task [3]. Fogs are not limited to either execute

a task or forward it to the cloud but also have the

capability to collaborate with other neighboring fogs.

This will reduce data access time and minimize the

overall end-to-end (e2e) latency. In this paper, the

concept of fog computing and F2F communication is

extended further to provide fast data access to IoT

devices through data replication and caching techniques

at fog storage sites. Cloud data is decomposed into a set

of files that if decomposed any less will not add any

more value to the decomposition. The decomposed set is

then cached into fog storage sites. When a data request

is submitted, the query is first assessed by a set of agents

to decide whether the request can be answered by the

cache.

Additionally, a multi-agent cooperation framework

is proposed to achieve the required task of data retrieval

and caching. If the requested data (or part of it) is not

available in the fog serving the concerned IoT device,

then data is retrieved from other nearby fogs, if

available, using a run-time file location prediction

technique that relies on users’ historical executions. The

solution considers certain parameters such as the user

ID, filename, and resource ID to predict file locations
978-1-5386-3531-5/17/$31.00 ©2017 IEEE

required for new jobs. The proposed approach uses a

search technique that relies on users’ past history to

predict a file’s location.

The remainder of the paper is organized as follows.

Related work is presented in Section II. Section III

covers the proposed solution along with the overall

system architecture. The decomposition and caching

processes are discussed in Section IV. Section V

illustrates the cache selection strategy. Section VI

illustrates and defines the proposed multi-agent

framework and the workflow model. Simulation results

are presented and discussed in Section VII. Finally, we

conclude the paper in Section VIII.

II. RELATED WORK

Fog computing extends cloud computing to the

network edge, allowing for load balancing, reduced

latency, and flexible mobility, which provides a

promising solution for 5G networks. Although research

is still premature in this area, some authors are now

focusing on data replication and caching within fog

systems. Kitanov et al. [4] considered evaluating fog

computing service orchestration as a support mechanism

for 5G networks in terms of round-trip latency. Results

demonstrate that 5G will have a great benefit in using

the fog/cloud computing environment, where round-trip

time is significantly reduced. This will allow 5G to cope

with services that require reduced latency, high

mobility, and real-time execution.

In [6], the authors proposed a cooperative scheme

between nearby fogs to improve QoS of the edge

computing infrastructure. Each fog data center uses a

buffer to store service requests for future local

executions. When the buffer is full, the upcoming

requests migrate to a neighboring fog. The neighboring

fog will accept to serve the request if its current queue

length is below a given threshold.

In [7], the authors proposed a QoS-aware service

distribution strategy in Fog-to-Cloud (F2C) scenarios

[8]. The work aims at achieving low delay on service

allocation by using service atomization in which

services are decomposed into distinct sub-services called

atomic services tailored to enable parallel execution.

These atomic services are executed on constrained edge

devices. Tasks with higher requirements are allocated on

more robust resources and executed in parallel with the

atomic services. A control plane within the F2C

architecture exists that is responsible for the distribution

of the atomic services among the available edge nodes.

The authors model the service allocation problem as a

multi-dimensional knapsack problem (MKP) [8].

Verma et al. [9] proposed a load balancing method

for fog/cloud systems which uses a data replication

technique for maintaining data in fog storage sites. The

solution aims at reducing the overall dependency on big

data centers. The authors in [10] focused on improving

users’ QoE through load balancing in fog computing.

The work considered the case of multiple users requiring

computation offloading, where all requests are to be

processed by local computation cluster resources. The

solution considers a low complexity small cell cluster

establishment and resource management customizable

algorithm for fog clustering. Simulation results show

that the proposed algorithm yields high user satisfaction

rates for up to four users per fog with moderate power

consumption and high latency gain.

Although there exists recent research in the area of

fog/cloud resource sharing and cooperation for load

balancing, work in data replication and caching in fog

computing systems is still premature. We believe that

our work is the first to consider a F2F communication

scheme that allows data to be cached within fog storage

sites [11]. Fogs then collaborate and share data to

complete job requests initiated from 5G network users to

reduce the overall latency.

III. PROPOSED ARCHITECTURE

As the number of next-generation mobile networks

increase, and with enormous amounts of data residing in

the cloud, frequently accessed data must be made

available in closer proximity to cloud service clients.

This will allow for both increased data accessibility rates

and enhanced QoS levels. A data caching and selection

technique has been developed to overcome data

accessibility issues for cloud bigdata in 5G networks.

Frequently accessed data is cached on fog storage sites

with the aid of the Data Replication/Caching Module,

where file or block replicas are stored or cached on fog

storage sites. Replicas and cached data are regularly

updated through notifications sent from the cloud. A

data decomposition and caching technique (Section IV)

is used to decompose files into blocks. Once data is

available in the cache, a selection technique is used to

access files or blocks from fog storage sites (Section V).

Figure 1 provides an overview of the proposed

architecture.

Cloud Data
CenterFog Storage Sites

File 1

File 2

File n

...

R
e

p
licatio

n
/C

ach
in

g

Replica Management Service

Replica/Cache Creator

Replica/Cache Remover

Job scheduler

Resource Discovery

R
ep

lic
a/

C
a

ch
e

M
an

a
ge

r

Data Replication/Caching Module

5G Users

C
a

ch
e

Se
le

ct
io

n
 S

er
vi

ce

Fig.1. Proposed data replication and caching module

incorporated for fog/cloud environments.

Cloud

Fog 2 Fog 1

F1 request with
blocks β1, β2 and β3

F2F

F1

F1-β1 F1-β2 F2-β1 ...F1-β3 F2-β2 ...

Fog 3

F1-β3 F2-β2 ...
F2F

F2 Fn...

Partially cache F1
into β1 and β2

F2C/C2F

Request and
retrieve F1-β3 Request F1-β3

Fig.2. An example illustrating file blocks cached in multiple

fogs.

IV. DATA DECOMPOSITION AND CACHING

We define a block to be a set of files that if

decomposed any less will not add any more value to the

decomposition. A block is an answer to a single file

query from a single data set. Any more complex queries

can be answered by mathematically composing those

blocks together. By increasing the granularity of the

cache, a bigger diversity of queries can be answered and

the space needed to store information to answer a set of

queries is minimized [12].

When a data request is submitted to the fog, blocks

are mathematically checked to see whether the fog can

fulfill the request. This is achieved by decomposing the

submitted request into its own blocks and then

comparing those blocks with the cached one. Suppose

an IoT device is requesting access to file .mp4

media file with English subtitles and special color

filtrations. Three blocks exist for : .mp4 media

file, English subtitles for the file, and color

filtrations for media files. Therefore, when data is

replicated from the original cloud storage site to fog

storage sites, blocks from a single file are replicated

separately either to the same fog or different fogs.

Hence, when IoT devices request access to data, the

request can be either fully answered, partially answered,

or cannot be answered at all.

Assume that a user is requesting access to and

only and exist in the fog serving the user (assume

) as illustrated in Figure 2. Now to complete the

user’s request will query nearby fogs for the

missing block (i.e.). Once the block is found (assume

in), it is replicated from to . This

completes the missing data and the returned missing

blocks are added to the cache.

To avoid replicating the entire set of data from the

original cloud storage site to a fog storage site, block

resizing is considered. Block resizing is the process of

increasing the cache when a query results in a bigger set

of data than is already cached and decreasing the cache

when a query results in a smaller set of data than is

cached. To resize blocks, hit ratio is considered where

blocks that are not queried more than a certain threshold

are flushed to assure that the size of the cache is

maintainable.

V. CACHE SELECTION

Once file block replicas have been cached in fog

storage sites, the process of locating files for job

requests must be considered. The majority of distributed

systems locate files by using a central replica location

repository [6] which maintains indices that represent the

mapping between logical cached files and the original

files at the cloud. These approaches use a simple match-

making approach based on the filename. Replica

location repositories work tolerably well for small

systems. However, in more complex configurations,

such as cloud systems, job turnaround time increases

each time a requested file proves not to be registered in

a particular replica location repository and an alternative

repository has to be sought. Additionally, retrieval

strategies must cope with requests for file blocks stored

in dispersed fogs.

The proposed file selection model introduced in this

paper provides an efficient solution to access local files

(i.e. files located in the fog serving the user which

requested the file) and remote files (i.e. files located in

other fogs). The proposed approach uses a search

technique that depends on users’ past history to predict a

file’s location either in local or remote fogs. The

proposed solution exploits habitual job parameters from

execution logs (user ID, filename, block name, file

location, block location, resource ID, etc.) to predict the

file/block locations required for new jobs. After a task is

completed, the parameter sets which are used to find file

locations are stored in a fog file location repository (i.e.

edge node). These parameter sets are used to predict file

locations for future jobs.

Using the proposed prediction model, the replica

management service is able to determine the location of

a file in one step and inform the requesting job

immediately. Thereby reducing the overhead associated

with potentially complicated searches in different fog

and cloud storage sites. If a job completes successfully

on the basis of file location prediction, the job

parameters (i.e. User ID, Resource ID, Required File,

Required Block, Block and File Size) are stored in a

‘history database’ separate from the fog file location

repository. This history database is used to support our

replica prediction method. Each time a job enters the

system, the database is searched, and, if it contains the

file location for a particular job configuration (i.e. some

instantiation of the job parameters), the result is sent

back. Otherwise a new prediction is made, which if

successful, is also added to the prediction model for

future use. If a prediction is incorrect, or if there is no

match in the prediction model for an incoming job, a

conventional cloud storage site search is initiated. Figure

3 provides an overview of the steps taken to retrieve

files requested by 5G users using our proposed solution.

VI. WORKFLOW-NET COOPERATIVE FOG MODEL

We assume that the data caching and request

problem is modeled using a multi-agent framework. The

number of agents involved in the process is greater than

or equal to the number of blocks created to cache a

particular file. The extra agents involved have the roll of

coordinators and monitors for block request submissions

to other agents to answer partial queries and collect

results from partial queries to build the answer of the

whole query. Every time a new block is introduced, a

new agent is created to manage the process of dealing

with this block. The multi-agent framework is

mathematically described as follows:

 (1)

where
 is the cooperative framework for the agents
 is the set of cooperating agents in

 is a set of coordinators and monitors
 is the set of all registered files/blocks in the fog file

location repositories
 is the set of cached blocks

 is a mapping function from agents to blocks
 is a mapping function from blocks to repositories
 is a mapping function from agents to repositories

and where and and and

 and and and ,

 and and

 and and ,

and and and

and , and .

In other words, the set of cooperating agents cannot

be empty, the set of coordinator and monitor agents

cannot be empty, and the set of coordinator and monitor

agents are selected from the set of agents in the

framework. Additionally, the set of registered

files/blocks in the fog file location repositories cannot be

empty. Every block is managed by one and only one

agent and every agent manages a single block. Every

block in the file location repository is managed by one

and only one agent and every agent manages a single

block in the file location repository. Every file in the

repository has at least one block and the repository and

block that are associated together are managed by the

same agent.

Figure 4 provides an illustrative example on how

blocks are retrieved from different fogs. When a file

request is submitted by the user, it is received by one of

the coordinating agents, which in turn determine the

blocks needed to compose the file. It then sends the

request for every block to its responsible agent. That

agent will get the request and calculates whether the

time needed to transmit the file is within the limit set by

the user. If it is, then the block will be transmitted to the

coordinator immediately. If not, then the file will be

cached within the requesting fog if the block request

threshold has been met for future block requests. The

coordinator will gather all the blocks and joins them

together, producing the requested file and sends it back

to the user. In case that the request contains a block that

has no agent yet, an agent is created for it.

We use workflow-nets to model the behavior of fog

agents. Workflow-nets are an extension to petri-nets, in

which the latter is a directed graph with two types of

nodes, namely places (circles) and transitions (solid

rectangles) [13]. Transitions model events that may

occur, while places model pre- or post-conditions for

transitions. Arcs connect places to transitions and

transitions to places. Workflow-nets are preferred over

petri-nets due to their characteristic of having a single

source node and a single sink node thus achieving the

notion of soundness [14]. Figure 5 shows the flow of

Fog 2

Fog 1

F1 request with
blocks β1, β2 and β3

F2F

F1-β1 F1-β2 F2-β1 ...

F1-β3 F2-β2 ...

Fog 3

F1-β3 F2-β2 ...

F2F

F2F

Fog 4

F3-β1 F2-β2 ... F2F
F2F

Coordinator Agent (Edge Node)

Monitor Agent
(Edge Node)

Monitor Agent
(Edge Node)

Monitor Agent
(Edge Node)

Fig.4. An example illustrating the retrieval of file blocks

from neighboring fogs.

5G User

Submit job
request to fog

Replica/Cache
Management

Service

Job requires one or more file blocks

Use file/block
location prediction

technique

Correct
prediction?

No

Send file/block
request to

neighbouring fogs

Send file/
block

File/block
registered?

Fog serving 5G user Neighbouring Fogs

Get file/
block

location

Send file/
block

Replicate
file/block to

fog

Cloud

Send file/
block

Yes

No

Yes

Fig.3. Flowchart illustrating the steps taken to deliver a
requested file to a 5G user. If blocks are not cached in the

fog serving the user, request will be sent to neighboring fogs.

behavior for a single fog agent controlling a file block

request and composition.

VII. SIMULATION RESULTS

To simulate the complexity of real cloud systems, a

comparison of the proposed caching technique and a full

replication method is performed using GridSim [15].

We assume that 5G users reside on geographically

distributed sites. The network is modeled as a graph

 where the set of nodes

represent storage sites in the fogs and represents the

bandwidth. All nodes are assumed to have uniform

bandwidth, computing power, memory and storage

capacity. Different scenarios are simulated by varying

the number of files, size of files, number of job requests

and capacity of storage nodes as outlined in Table I to

support realistic large-scale data-dependent systems.

TABLE I. SIMULATION SCENARIO CONFIGURATIONS

Number of Fogs 3

Number of 5G Users 150

Storage Nodes per Site Between 2 and 40

Size of Files Between 100 GB and 500 TB

Connectivity Bandwidth Up to 2000 MB/Sec

Size of Workload Up to 1500 Jobs

Overall simulation results show a decrease in file

access delay. Figure 6 shows that the average response

time for file/block access is reduced when compared to

the non-caching technique where files are replicated to a

single fog rather than caching blocks distributively

among different fogs. Four different job requests are

used to compare the two techniques: small, medium,

large and very large file size job requests.

The same experiment is repeated while varying the

number of job requests. Results depicted in Figure 7

show that access time when using the proposed

technique outperforms the non-caching technique in all

job request cases.

Additional experiments were conducted to test the

job turnaround time (JTT) for both the caching and non-

caching techniques. JTT is computed as the average of

the total time taken for all jobs to be completed. The

system’s performance was evaluated under three

different scenarios by varying the file size and the

number of jobs each time. Results show that the

proposed technique’s performance outweighs the non-

caching solution as the system size increases. Table II

provides detailed results of the comparison between the

two techniques.

TABLE II. JOB TURNAROUND TIME UNDER DIFFERENT

SCENARIOS

File size

No. of

job
requests

JTT for non-
caching

technique

(Seconds)

JTT for
caching

technique

(Seconds)

Average

Difference
(%)

Small

file

500
1000

1500

920
1862

2795

684
1373

2025

26.8

Large

file

500
1000

1500

2028
4097

6113

1474
2948

4366

28.2

Very

large
file

500

1000
1500

5640

11366
17232

3890

7727
11871

31.4

Total - 52053 36358 -

Average - 5784 4040 28.8

VIII. CONCLUSION

Fog computing provides a solution for cloud

shortcomings in which network, processing, and storage

resources are brought closer to mobile users, hence

reducing the overall e2e delay. We introduced a data

caching strategy for fog environments in which highly

accessed files are decomposed into blocks and cached

into different fogs for load balancing. Access to files

composed of multiple blocks is achieved by

mathematically composing those blocks together. The

cache selection strategy relies on a search technique that

is trained on users’ past history to predict a file’s

location either in local or remote fogs. The solution

exploits habitual job parameters from execution logs to

predict the file/block locations required for new jobs.

Fog agents are used in the communication process for

Fig.6. Average response time for file/block access with

varying sizes.

P2

File F1 request
received

Other fog agent
tasks

P3

P1

Pn

Request F1-B3
from Fog 2

Request processed

Transmit F1-B3 to
Fog 1

File block
transmitted

File delivered
to 5G user

Compose blocks
into single file

Fig.5. A workflow-net model for an agent controlling a file

block request and composition.

Fig.7. Average response time for file/block access with

varying number of job requests.

block retrieval and composition. Additionally, the

problem is modelled as a workflow-net. Simulation

results show overall decrease in file access time and job

turnaround time when comparing the proposed caching

technique to a non-caching method.

REFERENCES

[1] R. Villars, C. Olofson and M. Eastwood, “Big data:

What it is and why you should care”, White Paper, IDC,

MA, USA, 2011.

[2] M. Aazam and E. N. Huh, "Fog Computing: The Cloud-

IoT/IoE Middleware Paradigm," in IEEE Potentials, vol.

35, no. 3, pp. 40-44, May-June 2016.

[3] W. Masri, I. Al Ridhawi, N. Mostafa and P. Pourghomi,

"Minimizing delay in IoT systems through collaborative

fog-to-fog (F2F) communication," in Proc. 2017 9th

International Conference on Ubiquitous and Future

Networks (ICUFN), Milan, 2017, pp. 1005-1010.

[4] S. Kitanov and T. Janevski, "State of the art: Fog

computing for 5G networks," 2016 24th

Telecommunications Forum (TELFOR), Belgrade, 2016,

pp. 1-4.

[5] R. Beraldi, A. Mtibaa and H. Alnuweiri, "Cooperative

load balancing scheme for edge computing resources,"

2017 2nd International Conference on Fog and Mobile

Edge Computing (FMEC), Valencia, 2017, pp. 94-100.

[6] A. Sulistio, U. Cibej , B. Robic, and R. Buyya, “A

Toolkit for Modelling and Simulation of Data Grids with

Integration of Data Storage, Replication and Analysis”,

Elsevier Science, 17 January 2006.

[7] V. B. Souza, X. Masip-Bruin, E. Marin-Tordera, W.

Ramirez and S. Sanchez, "Towards Distributed Service

Allocation in Fog-to-Cloud (F2C) Scenarios," in Proc.

2016 IEEE Global Communications Conference

(GLOBECOM), Washington, DC, 2016, pp. 1-6.

[8] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A.

Jukan and G. J. Ren, "Foggy clouds and cloudy fogs: a

real need for coordinated management of fog-to-cloud

computing systems," in IEEE Wireless Communications,

vol. 23, no. 5, pp. 120-128, October 2016.

[9] S. Verma, A. K. Yadav, D. Motwani, R. S. Raw and H.

K. Singh, "An efficient data replication and load

balancing technique for fog computing environment,"

2016 3rd International Conference on Computing for

Sustainable Global Development (INDIACom), New

Delhi, 2016, pp. 2888-2895.

[10] J. Oueis, E. C. Strinati and S. Barbarossa, "The Fog

Balancing: Load Distribution for Small Cell Cloud

Computing," 2015 IEEE 81st Vehicular Technology

Conference - Spring, Glasgow, 2015, pp. 1-6.

[11] S. Singh, Y. C. Chiu, Y. H. Tsai and J. S. Yang, "Mobile

Edge Fog Computing in 5G Era: Architecture and

Implementation," 2016 International Computer

Symposium (ICS), Chiayi, 2016, pp. 731-735.

[12] M. Khan, and M.N. Khan, “Exploring Query

Optimization Techniques in Relational Databases,” in

International Journal of Database Theory Application,

vol. 6, 2013.

[13] I. Al Ridhawi, Y. Kotb, M. Aloqaily and B. Kantarci, "A

probabilistic process learning approach for service

composition in cloud networks," in Proc. IEEE 30th

Canadian Conference on Electrical and Computer

Engineering (CCECE), Windsor, ON, 2017, pp. 1-6.

[14] Y. Kotb and E. Baderdin, “Synchronization among

activities in a workflow using extended workflow petri

nets," in Proc. of the 7th IEEE International Conference

on E-Commerce Technology, 2005, pp. 548-551.

[15] R. Buyya, and M. Murshed, “GridSim: a toolkit for the

modeling and simulation of distributed resource

management and scheduling for Grid computing”, John

Wiley & Sons Ltd, 2002.

